Deep LSTM based Feature Mapping for Query Classification

نویسندگان

  • Yangyang Shi
  • Kaisheng Yao
  • Le Tian
  • Daxin Jiang
چکیده

Traditional convolutional neural network (CNN) based query classification uses linear feature mapping in its convolution operation. The recurrent neural network (RNN), differs from a CNN in representing word sequence with their ordering information kept explicitly. We propose using a deep long-short-term-memory (DLSTM) based feature mapping to learn feature representation for CNN. The DLSTM, which is a stack of LSTM units, has different order of feature representations at different depth of LSTM unit. The bottom LSTM unit equipped with input and output gates, extracts the first order feature representation from current word. To extract higher order nonlinear feature representation, the LSTM unit at higher position gets input from two parts. First part is the lower LSTM unit’s memory cell from previous word. Second part is the lower LSTM unit’s hidden output from current word. In this way, the DLSTM captures the nonlinear nonconsecutive interaction within n-grams. Using an architecture that combines a stack of the DLSTM layers with a tradition CNN layer, we have observed new state-of-the-art query classification accuracy on benchmark data sets for query classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspect Level Sentiment Classification with Deep Memory Network

We introduce a deep memory network for aspect level sentiment classification. Unlike feature-based SVM and sequential neural models such as LSTM, this approach explicitly captures the importance of each context word when inferring the sentiment polarity of an aspect. Such importance degree and text representation are calculated with multiple computational layers, each of which is a neural atten...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Deep Learning for Query Semantic Domains Classification

6 Long Short Term Memory (LSTM), a type of recurrent neural network, has 7 been widely used for Language Model. One of the application is speech query 8 domain classification where LSTM is shown to be more effective than 9 traditional statistic models and feedforward neural networks. Different from 10 speech queries, text queries to search engines are usually shorter and lack of 11 correct gram...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Language Identification Based on Generative Modeling of Posteriorgram Sequences Extracted from Frame-by-Frame DNNs and LSTM-RNNs

This paper aims to enhance spoken language identification methods based on direct discriminative modeling of language labels using deep neural networks (DNNs) and long shortterm memory recurrent neural networks (LSTM-RNNs). In conventional methods, frame-by-frame DNNs or LSTM-RNNs are used for utterance-level classification. Although they have strong frame-level classification performance and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016